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Abstract: The intersatellite communications represent a new, important element in the contemporary
conception about navigation. The main peculiarity of the propagation of a signal in a gravitational field is that the
trajectory of the signal is curved. The report is a short review of the author’s publications during the last 8 years
on the problem about the exchange of signals between moving satellites, requiring the application of the methods
of General Relativity Theory, as well as of the mathematical methods of algebraic geometry and elliptic integrals.
New notions about “space-time distance” (which can be negative, equal to zero or positive), as well as about
“geodesic distance” are introduced. Another new result is that the time for the propagation of the signal is
expressed by means of elliptic integrals. The numerical calculation shows that the signal is propagating at a
distance 26, 558.15102 [km] for a time 0.028134 [s]. This distance is comparable by order to the characteristic
distance for intersatellite communications 49,465 [km].
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Knrovyoeu Aymu: mexdycribmHukosu komyHukauuu; lNMpunoxHa Ob6wa Teopusi Ha OmHocumenHocm;
enunmuyYHU QoyHKUUU U UHMezpanu; anzebpuyHa eeomempusi

Pe3rome: MexdycnbmHukogume KOMyHUKaUuuu ca HO8, CbUWecmeeH efleMeHm Ha CcbepeMeHHama
KOHuenuus 3a Hasuzaayusi. [nasHa ocobeHocm Ha pasnpocmpaHeHue Ha cuaHau 8 epagumauyuoHHO rosne e, Jye
mpaekmopusima um ce uskpussiea . [Joknadbm rnpedcmasrnsiea kpambk 0630p Ha pabomume Ha asmopa rpes
rnocrnedHume 8 200uHu ebpxy npobrnema 3a obMeH Ha cusHanu mexdy Osuxewu ce CnbMHUUU, u3ucksaw
npunazaHe memodume Ha OTO, Kkakmo u Ha Mamemamu4ecku mMemodu Ha aneebpuyHama zeomempusi U
enunmuyHume uHmezpasnu. BbeedeHu ca Hosume MOHSAMUS 3a ,[IPOCMPaHCMBEHO-8PEMEHHO Pa3CcCmMosiHUe"
(Moxe O0a 6B0e ompuuamesiHo, Hy/1e80 UJMU MOJIOXKUMESIHO), CbWo U ,2e00e3U4HO pa3cmosHue”. [pyes Hos8
pesynmam: u3passeaHe Ha epeMemo Ha pasnpocmpaHeHue Ha CcusHana 4Ype3 enurnmuyHU UuHmeeparnu.
HucneHomo nipecmsimaHe rokasea, Yye cugHaibm ce pasfnpocmpaHsiea Ha pa3cmosiHue 26, 558.15102 [km] 3a
epeme 0.028134 [s]. [lo nopssdbK pa3cmosiHUemo € CcpasHUMO C XapakmepHomo pas3CcmosiHue 3a
MexdycrnbmHUKo8U KoMyHuKayuu 49,465 [km].
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Introduction

Intersatellite communications are very important in view of creating a network of satellites and
achieving high-rate data transfer [1], laser communications between satellites and relaying data
around the globe with the purpose of early warning/tracking of missile launching [2].

Since 2003, after the review article [3] of Prof. Neil Ashby, the formalism of GRT has been
commonly applied. A fundamental fact is that the trajectory of a signal (electromagnetic or laser),
propagating in the near-Earth space is curved, due to which the signal is propagating at a greater time
in comparison with the propagation time for the case of a flat space-time. Thus, this propagation time
for the case of the curved space-time around the Earth is expressed by the simple formulae, well
known in the literature as the Shapiro delay formulae

(1) T, = Rap + 26GpMg In TA +rg+Ryp
AB ¢ c3 TA +rg—Ryp '

In the above formulae the second term (the logarithmic correction) is related to the action of
the gravitational field and is called the Shapiro time delay term. The propagation time T,z for the
propagation of the signal between two points A and B is obtained after integrating the s. c. null cone
equation

(2)  ds?=0=gec?dT? + 2gy;cdTdx’ + g;;dx‘dx’

for the metric element in the near-Earth space
2V
(3) ds?=-(c?+2V)dT)*+ (1 — C—z)((dx)2+(oly)2 + (dz)?) .

Formulae (1) has several shortcomings, not making it possible to be applied for
communications between satellites.

1. It depends on the initial and final moments of emission and reception of the signal and on the
final distance of propagation of the signal, which is not known initially. No signal-receiving
satellite is assumed to be situated at the final point. In this report and in all the papers [4, 5],
[6] the aim will be to find the signal propagation timeT, so that the reception of the signal by
the second satellite has to take into account not only the curving of the trajectory of the signal
due to GRT-effects, but also the uncorrelated motion of the two satellites (on one orbit or on
two different orbits).

2. Formulae (1) does not give the propagation time for concrete circumstances — for example,
the propagation time of a signal, emitted by a satellite, moving on a plane elliptic orbit
(characterized by the semi-major axis a, the ellipticity e and the eccentric anomaly angle E) or
on a space-oriented orbit, characterized by 6 Kepler parameters with a dynamical parameter
the angle of true anomaly f. For both cases, a qualitatively new result has been obtained [7],
[8], [9] - the propagation time was expressed in terms of a combination of elliptic integrals of
the first, second and the third kind (the first case of a plane orbit) or in terms of a combination
of elliptic integrals of second and fourth order (for satellites, moving on space-oriented orbits).

In (1) the first term is the Euclidean distance, divided by the velocity of light c. However, in the
framework of GRT the distance is given by the metric, so one cannot separate a “flat’-spacetime part
and a “curved”-part. In [10] a modification of the Shapiro formulae (1) has been proposed

1 ; ; . 2GpM JE@2Z2+()2+(2)?
@  Txf @+ G+ (2)Pds +20re [rOIE g,

Rap

where in the first term the distance is measured along a curve with a parameter s and
GgMg is the geocentric gravitational constant.

The algebraic geometry method of two null four-dimensional intersecting cones (case
of plane elliptic orbits) — basic equations, newly introduced physical notions and some
consequences

This method for calculation of the propagation time of a signal, emitted by a moving satellite
and intercepted by another moving satellite has been proposed in the papers of the author [4, 5] and
subsequently summarized in the review paper [6]. The basic idea is to write the null cone equation (2)
for the metric (3) at two different space-time points
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(5)  ds?= —(c?+2V,)(dT))? + (1
(6)  ds?= —(c?+2V,)(dT,)? + (1

) ((dx,)? + (dy,)? + (dz)%) = 0,
) ((dx2)? + (dy,)? + (dz;)?) = 0

and subsequently, to intersect these four-dimensional cones with the hyperplane, formed by the
differential of the square of the Euclidean distance

(7)  dRZp=d(x; — x2)2 +d(y, — }’2)2 +d(z; — 22)2-
For the case of plane elliptic orbits, expressions (5) — (7) represent a system of three
(nonlinear) algebraic equations with respect to three variables - the differential of the square of the

Euclidean distance and the differentials of the two propagation times. If the two satellites are on two-
dimensional plane elliptic orbits, parametrized in the standard way as

(8) x; =a;(cosE; —e,) , x, = ay(cosE, —e,) , ¥y, = a;\/1 —efsinE; , y, = a1 — eZsinkE, ,

then a differential equation in full derivatives is obtained with respect to the square of the Euclidean
distance. The solution will no longer be equal to the Euclidean distance [4, 5], but will represent the s.
c. “space-time” distance, which in analogy with the space-time interval in Special and General
Relativity can be negative, equal to zero or positive. Let us take the limiting case

(9) 61=€2=€,a1=a2=a,El=E2=E.

Since the positions of the two satellites will coincide, the Euclidean distance will be zero, but
the space-time distance (denoted below as R2;) will be non-zero and will be equal to

(10) R%z=4a’sin’E.(1—e?) +a%(e?*-2) .

It can be positive, negative or equal to zero. The equality to zero is satisfied if

2
(11) sin?E = ==

T 4(1-e2)

In fact, this condition in the papers [4, 5] is called “the compatibility condition for intersatellite
communications”, because it can be obtained after requiring the space-time distance to be
comparable to the Euclidean distance. For the typical value of the eccentricity e = 0.01323881349526
for the GPS orbit, the limiting value for the eccentric anomaly angle from the compatibility condition
(20) is

. |1 [2-e2
(12) Ej, = arcsin [E /1_22],

which has the numerical value 45.002510943228 [deg]. Although the eccentricity is taken for the GPS
orbit, a disposition of satellites on one orbit (equal values for the large semi-major axis and equal
eccentricities) for the above angular distance is typical for the Russian GLONASS satellite
constellation (Global'naya Navigazionnaya Sputnikovaya Sistema) with 8 satellites, situated on one
orbit. For the eccentricity of the GLONASS satellite orbits e = 0.02, the value for E slightly changes to
E = 45.00573 [deg]. Another restriction on the orbit eccentricity e < 0.81649658092 follows from
equality (11), since sinE =1 s fulfilled for sinE as a trigonometric function. This means that for the
Space-Ground Radio Interferometer Radio-Astron with a variable baseline, consisting of a satellite on
an orbit with a large semi-major axis a ~ 0.2 x 10° [km] and a variable eccentricity of the satellite
orbit, ranging from e = 0.59 to e = 0.966, the communications between satellites on the orbit are
reliable only in the range 0.59 < e < 0.81649658092.

The third important physical notion, introduced in [4, 5] is about the “geodesic distance” — this
is the real distance, travelled by the light or radio signal. Since this is a real distance, it should be
positive and in accord with the physical essence of the Shapiro formulae (1), it should be greater also
than the Euclidean distance. This is proved in a strict mathematical way for the general case in the
papers [4, 5], because the geodesic distance is obtained after the “compatibility condition” is
substituted in the formulae for the space-time distance. From the difference between the squares of
the two distances the greatness of the geodesic distance (denoted with a ~ (tilda) sign above)
becomes evident
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(13)  Rip- Riz= 3 (a + a3) - ejeaqa, + " (aZe? + a3e}) - 2a;a,/(1 —e)(1 —e€?) .

In the limiting case of equal eccentricities and equal semi-major axis, this equality proves that
the geodesic distance is greater than the Euclidean distance

(14) ﬁAB:\/RﬁB +a?(1 - gez) .

Elliptic integrals for calculation of the propagation time of the signal for the case of
satellites on plane elliptical orbits

Equations (5) and (6) represent differential equations with respect to the propagation time,
defined for each of the satellites. The propagation time depends on variables, related to the motion of
the satellites. For the case of the plane elliptic orbits, the dynamical parameters, related to the motion
of the two satellites are the two eccentric anomaly angles E; and E,. For the case of space-oriented
orbits, the dynamical parameters will be the two true anomaly angles f; and f,. All the other Kepler
parameters, characterizing the orbit will be present in the formulas, but will not be dynamical ones.
Moreover, each of the equations (5) and (6) will depend either on only E; or f;, or on E, or f,. The
element of integration dr is lying in the plane of the orbit.

For a plane elliptic orbit, characterized by the parameters (a, e, E), the propagation time T is
calculated in the paper [8] and then in the review article [7] of the author as

a 26pgM 1+ecosE
_4 Y 2 _ oM .
(15) T ==[+V1-e2cos?EdE o) [ dE

c

It is important that the calculation turned out to be possible under the approximation

_ 2V _ 26GgMg 26gMg 9 _ g [m®
(16) p=%5=2g8«1, 22" = 0.167.107 , GgMg = 3986005 x 10 EE

Physically related to weak gravitational fields and slow motion — these assumptions in
gravitational physics are compatible with the Equivalence Principle [11] fields. Inequality (16) is

obtained for the value of the velocity of light ¢ = 299,792.458 [kTm] and value of the large semi-major

axis a = 26,561 [km]. It can be checked also that the coefficient in front of the first integral in (15) has
the dimension of [%] =[s], and the value of the coefficient in front of the second integral (the geocentric

N

m3

gravitational constant, divided by the third power of ¢) has the dimension [;—i]:[s]. Thus, the proper
3

dimension for the coefficients in expression (15) for the propagation time T is a confirmation of the
correctness of the mathematical formalism. If the inequality (16) is not taken into account, in [7] and [8]
it was shown that yet a solution for T can be found, but in terms of an integral, which is not an abelian
one and not possible to be solved analytically.

In (15) the first term is an elliptic integral of the second kind and the second term can be
decomposed as a sum of an elliptic integral of the first kind and in the Weierstrass form (third-order
polynomial under the square root in the denominator) [7, 8]

(4)_4GgMg 1 dy
a7 L= =
3 ky1-e? Jy(y+1)6+ki4)

and an elliptic integral of the third kind, again in the Weierstrass form

(B)_4G@M$ 1 ay
a8) 1= . S
Poee Vimet gy oG

Both integrals (17) and (18) are written in terms of variables, depending on cosE and with
coefficients, inversely proportional to the third power of the velocity of light c. Thus, their contribution
will be much smaller than the contribution of the first integral in (15), which is inversely proportional to
c. The numerical calculation (by means of online programs for numerical calculation of elliptic
integrals) of the first integral in (15), performed by using the sixth iteration for eccentric anomaly angle
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E, from the Kepler equation (see the details in the review article [7]) gives the numerical value for the
leading term in (15) for the propagation time

(19)  T"9=2 [ V1= eZcos?E dE = —0.0281342485273829 [s] .

From the Kepler equation and for the sixth iteration E¢, the celestial time of motion for the
satellite is calculated to be T.,; = 37.5082561 [s]. If the velocity of the satellite is taken to be v =

3.874 [kTm], the satellite will move at a distance 145.125 [km]. If the propagation time for the signal (19)

is multiplied by the light velocity (thus, the curving of the trajectory of the signal due to the gravitational
field in the framework of GRT is taken into account), the signal will propagate at a distance
26,558.151016917626350 [km]. Consequently, the propagation time is much smaller than the celestial
time of motion of the satellite. This is so because the celestial time of motion is related to celestial
mechanics, while the propagation time is an effect, following from General Relativity Theory.

Elliptic integrals of higher order for calculation of the propagation time of the signal for
the case of satellites on space-oriented elliptical orbits

The position of space-oriented orbits is specified by 6 Kepler parameters (a,e,l,w,Q, f) [9],
which determine not only the position of the satellite on the orbit (related to the true anomaly angle f)
and the parameters of the elliptic orbit (a, e), but also the position of the orbit in space (I, w, ), where |
is the inclination of the orbit with respect to the equatorial plane. If at each point of the orbit the
Cartesian coordinates are X,Y,Z, then the mapping (X,Y,Z) - (a,e,1,w, Q, f) from a topological point
of view signifies a transition to a submersion manifold [10] (of 6 dimensions-more than the 3
dimensions of the initial manifold). The propagation time T for a signal, if emitted by a satellite on a
space-oriented orbit with the only dynamical parameter-the true anomaly angle f is much more
complicated (below i is the imaginary unit)

¢ c* (1-e2)2) ?
(20)

3
~ - 26gMgpnqz(1+e?) - ~
)]§4)(Y,CI) +®C§9(1—_ez)]i4)(y: D]

5
+i [ 26y Mgnaq2(1+e?
il-
3
c

where the second- and fourth- order elliptic integrals are expressed in the Legendre form

7(4) _ yidy @ a4 9*ay
@) L0 = masams - 00 =T e

The variables y,y,9 and q are defined as
_ | (@+ecosE) ~ _ J1lt2ecosf+e? . § _1-e
(22) r= A a(1-ecosE) '’ Y= 1+e ' y_q ST

Conclusion

This paper has the purpose to review two major approaches, proposed in a series of papers in
the last 8 years: the method of “four-dimensional intersecting null cones” and the elliptic integrals
method for calculation of the propagation time of the signal. The previously introduced notions of
“space-time distance”, “condition for intersatellite communication” and “geodesic distance” in fact refer
to the case, when the two null cones are intersecting. Yet, the newly derived equality (14) for the
geodesic distance and for the simplified case of equal eccentricities and semi-major axis clearly shows
that that in this approach the property of the light signal to travel a greater distance is preserved, as it
is the case for the Shapiro delay formulae (1). It is very interesting that the greater value for the
geodesic distance in comparison with the Euclidean distance is related also with the restriction
e < 0.816496580920n the eccentricity of the orbit and the Ilimiting values
0.59 < e < 0.81649658092 for the eccentricity of the orbit of the Space-Ground Radio Interferometer
Radio-Astron. The last restriction is also natural for satellites on high elliptical orbits such as SBIRS
(Space-Based Infrared System), consisting of four satellites, operating on geosynchronous Earth orbit,
and sensors on two host satellites in a highly (large, with a large value of e) elliptical orbit. Elliptical
orbit spacecrafts move with a variable orbit angular velocity, so it cannot be written as an explicit
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expression of a time function [12]. Yet, the given value for the eccentricity of highly elliptic orbit
e =0.7146 in the monograph [12] falls well within the calculated in this paper range
e < 0.81649658092, so satellites can still operate and exchange signals.

The other important result in the papers [6], [8], [9] and in the review paper [7] concerns a new
method for expressing the propagation time of the signal in terms of elliptic functions. The calculated
propagation distance for the value of time T = 0.0281342485273829 [s] in formulae (19) by using
special online programs for numerical calculation of elliptic integrals is typical for the inter-satellite
communications.
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