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Abstract: The intersatellite communications represent a new, important element in the contemporary 

conception about navigation. The main peculiarity of the propagation of a signal in a gravitational field is that the 
trajectory of the signal is curved. The report is a short review of the author’s publications during the last 8 years 
on the problem about the exchange of signals between moving satellites, requiring the application of the methods 
of General Relativity Theory, as well as of the mathematical methods of algebraic geometry and elliptic integrals. 
New notions about “space-time distance” (which can be negative, equal to zero or positive), as well as about 
“geodesic distance” are introduced. Another new result is that the time for the propagation of the signal is 
expressed by means of elliptic integrals. The numerical calculation shows that the signal is propagating at a 
distance 26, 558.15102 [km] for a time 0.028134 [s]. This distance is comparable by order to the characteristic 
distance for intersatellite communications 49,465 [km].  
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Резюме: Междуспътниковите комуникации са нов, съществен елемент на съвременната 
концепция за навигация.  Главна особеност на разпространение на сигнали в гравитационно поле е, че 
траекторията им се изкривява . Докладът представлява кратък обзор на работите на автора през 
последните 8 години върху  проблема за обмен на сигнали между движещи се спътници, изискващ 
прилагане методите на ОТО, както и на математически методи на алгебричната геометрия и 
елиптичните интеграли. Въведени са новите понятия за „пространствено-временно разстояние“ 
(може да бъде отрицателно, нулево или положително), също и „геодезично разстояние“. Друг нов 
резултат: изразяване на времето на разпространение на сигнала чрез елиптични интеграли. 
Численото пресмятане  показва, че сигналът се разпространява на разстояние 26, 558.15102 [km] за 
време 0.028134 [s]. По порядък разстоянието е сравнимо с характерното разстояние за 
междуспътникови комуникации 49,465 [km]. 
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Introduction 
 

Intersatellite communications are very important in view of creating a network of satellites and 
achieving high-rate data transfer [1], laser communications between satellites and relaying data 
around the globe  with the purpose of early  warning/tracking of missile launching [2].  

Since 2003, after the review article [3] of Prof. Neil Ashby, the formalism of GRT has been 
commonly applied. A fundamental fact is that the trajectory of a signal (electromagnetic or laser), 
propagating in the near-Earth space is curved, due to which the signal is propagating at a greater time 
in comparison with the propagation time for the case of a flat space-time. Thus, this propagation time 
for the case of the curved space-time around the Earth is expressed by the simple formulae, well 
known in the literature as the Shapiro delay formulae  
 

(1)    𝑇𝐴𝐵 =
𝑅𝐴𝐵

𝑐
+

2𝐺⨁𝑀⊕

𝑐3 ln (
𝑟𝐴  +𝑟𝐵+𝑅𝐴𝐵

𝑟𝐴  +𝑟𝐵−𝑅𝐴𝐵

)  .   

 
In the above formulae the second term (the logarithmic correction) is related to the action of 

the gravitational field and is called the Shapiro time delay term. The propagation time 𝑇𝐴𝐵 for the 

propagation of the signal between two points A and B is obtained after integrating the s. c. null cone 

equation 

(2)       𝑑𝑠2 = 0 = 𝑔00𝑐2𝑑𝑇2 + 2𝑔0𝑗𝑐𝑑𝑇𝑑𝑥𝑗 + 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗                    

for the metric element in the near-Earth space 
 

(3)       𝑑𝑠2= - (𝑐2 + 2𝑉)(𝑑𝑇)2 + (1 −
2𝑉

𝑐2)((𝑑𝑥)2+(𝑑𝑦)2 + (𝑑𝑧)2) . 

 
Formulae (1) has several shortcomings, not making it possible to be applied for 

communications between satellites. 
1. It depends on the initial and final moments of emission and reception of the signal and on the 

final distance of propagation of the signal, which is not known initially. No signal-receiving 
satellite is assumed to be situated at the final point. In this report and in all the papers [4, 5], 
[6]  the aim will be to find the signal propagation timeT, so that the reception of the signal by 
the second satellite has to take into account not only the curving of the trajectory of the signal 
due to GRT-effects, but also the uncorrelated motion of the two satellites (on one orbit or on 
two different orbits). 

2. Formulae (1) does not give the propagation time for concrete circumstances – for example, 
the propagation time of a signal, emitted by a satellite, moving on a plane elliptic orbit 
(characterized by the semi-major axis a, the ellipticity e and the eccentric anomaly angle E) or 
on a space-oriented orbit, characterized by 6 Kepler parameters with a dynamical parameter 
the angle of true anomaly f. For both cases, a qualitatively new result has been obtained [7], 
[8], [9] - the propagation time was expressed in terms of a combination of elliptic integrals of 
the first, second and the third kind (the first case of a plane orbit)  or in terms of a combination 
of elliptic integrals of second and fourth order (for satellites, moving on space-oriented orbits). 

 

In (1) the first term is the Euclidean distance, divided by the velocity of light c. However, in the 
framework of GRT the distance is given by the metric, so one cannot separate a “flat”-spacetime part 
and a “curved”-part. In [10] a modification of the Shapiro formulae (1) has been proposed 
 

(4)        𝑇 ≈
1

𝑐
∫ √(𝑥̇)2 + (𝑦̇)2 + (𝑧̇)2

𝑝𝑎𝑡ℎ
ds + 

2𝐺⨁𝑀⨁

𝑐3 ∫
√(𝑥̇)2+(𝑦̇)2+(𝑧̇)2

𝑅𝐴𝐵
𝑑𝑅𝐴𝐵  , 

  
where in the first term the distance is measured along a curve with a parameter s and 
G⨁M⨁ is the geocentric gravitational constant. 

 
The algebraic geometry method of two null four-dimensional intersecting cones (case 

of plane elliptic orbits) – basic equations, newly introduced physical notions and some 
consequences  
 

This method for calculation of the propagation time of a signal, emitted by a moving satellite 
and intercepted by another moving satellite has been proposed in the papers of the author [4, 5] and 
subsequently summarized in the review paper [6]. The basic idea is to write the null cone equation (2) 
for the metric (3) at two different space-time points 
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(5)         𝑑𝑠1
2 =  − (𝑐2 + 2𝑉1)(𝑑𝑇1)2 + (1 −

2𝑉1

𝑐2 ) ((𝑑𝑥1)2 + (𝑑𝑦1)2 + (𝑑𝑧1)2) = 0 ,  

(6)         𝑑𝑠2
2 =  − (𝑐2 + 2𝑉2)(𝑑𝑇2)2 + (1 −

2𝑉2

𝑐2 ) ((𝑑𝑥2)2 + (𝑑𝑦2)2 + (𝑑𝑧2)2) = 0   

 

and subsequently, to intersect these four-dimensional cones with the hyperplane, formed by the 

differential of the square of the Euclidean distance 

(7)       𝑑𝑅𝐴𝐵
2 = d(𝑥1 − 𝑥2)

2 + d(𝑦1 − 𝑦2)
2 + d(𝑧1 − 𝑧2)

2
.  

For the case of plane elliptic orbits, expressions (5) – (7) represent a system of three 
(nonlinear) algebraic equations with respect to three variables - the differential of the square of the 
Euclidean distance and the differentials of the two propagation times. If the two satellites are on two-
dimensional plane elliptic orbits, parametrized in the standard way as  

 

(8)       𝑥1 = 𝑎1(𝑐𝑜𝑠𝐸1 − 𝑒1)  ,   𝑥2 = 𝑎2(𝑐𝑜𝑠𝐸2 − 𝑒2)  , 𝑦1 = 𝑎1√1 − 𝑒1
2sin𝐸1 , 𝑦2 = 𝑎2√1 − 𝑒2

2sin𝐸2 , 

 
then a differential equation in full derivatives is obtained with respect to the square of the Euclidean 
distance. The solution will no longer be equal to the Euclidean distance [4, 5], but will represent the s. 
c. “space-time” distance, which in analogy with the space-time interval in Special and General 
Relativity can be negative, equal to zero or positive. Let us take the limiting case  
 
(9)    𝑒1 = 𝑒2 = 𝑒  ,  𝑎1 = 𝑎2 = 𝑎 , 𝐸1 = 𝐸2 = 𝐸  .    

  
Since the positions of the two satellites will coincide, the Euclidean distance will be zero, but 

the space-time distance (denoted below as 𝑅̂𝐴𝐵
2 ) will be non-zero and will be equal to  

 

(10)   𝑅̂𝐴𝐵
2 =4𝑎2𝑠𝑖𝑛2𝐸. (1 − 𝑒2) + 𝑎2(𝑒2 − 2)  . 

 
It can be positive, negative or equal to zero. The equality to zero is satisfied if  

 

(11)      𝑠𝑖𝑛2𝐸 =
2−𝑒2

4(1−𝑒2)
 .  

 
In fact, this condition in the papers [4, 5] is called “the compatibility condition for intersatellite 

communications”, because it can be obtained after requiring the space-time distance to be 
comparable to the Euclidean distance. For the typical value of the eccentricity e = 0.01323881349526  
for the GPS orbit, the limiting value for the eccentric anomaly angle from the compatibility condition 
(10) is  
 

(12)     𝐸𝑙𝑖𝑚 = 𝑎𝑟𝑐𝑠𝑖𝑛 [
1

2
√

2−𝑒2

1−𝑒2] , 

 
which has the numerical value 45.002510943228 [deg]. Although the eccentricity is taken for the GPS 
orbit, a disposition of satellites on one orbit (equal values for the large semi-major axis and equal 
eccentricities) for the above angular distance is typical for the Russian GLONASS satellite 
constellation (Global’naya Navigazionnaya Sputnikovaya Sistema) with 8 satellites, situated  on one 
orbit. For the eccentricity of the GLONASS satellite orbits 𝑒 = 0.02, the value for E slightly changes to 

E = 45.00573 [deg]. Another restriction on the orbit eccentricity e ≤  0.81649658092  follows from 

equality (11), since 𝑠𝑖𝑛𝐸 ≦ 1  is fulfilled for 𝑠𝑖𝑛𝐸 as a trigonometric function. This means that for the 
Space-Ground Radio Interferometer Radio-Astron with a variable baseline, consisting of a satellite on 

an orbit with a large semi-major axis 𝑎 ≈ 0.2 × 106 [𝑘𝑚]  and a variable eccentricity of the satellite 
orbit, ranging from 𝑒 = 0.59 to 𝑒 = 0.966, the communications between satellites on the orbit are 

reliable only in the range 0.59 <  e ≤  0.81649658092. 
The third important physical notion, introduced in [4, 5] is about the “geodesic distance” – this 

is the real distance, travelled by the light or radio signal. Since this is a real distance, it should be 
positive and in accord with the physical essence of the Shapiro formulae (1), it should be greater also 
than the Euclidean distance. This is proved in a strict mathematical way for the general case in the 
papers [4, 5], because the geodesic distance is obtained after the “compatibility condition” is 
substituted in the formulae for the space-time distance. From the difference between the squares of 
the two distances the greatness of the geodesic distance (denoted with a ∼ (tilda) sign above) 
becomes evident  
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(13)      𝑅𝐴𝐵
2  - 𝑅̃𝐴𝐵

2 = 
1

2
 (𝑎1

2 +  𝑎2
2) - 𝑒1𝑒2𝑎1𝑎2 +

1

4
 (𝑎1

2𝑒1
2 +  𝑎2

2𝑒2
2) - 2𝑎1𝑎2√(1 − 𝑒1

2)(1 − 𝑒2
2) .   

                                
In the limiting case of equal eccentricities and equal semi-major axis, this equality proves that 

the geodesic distance is greater than the Euclidean distance 
 

(14)   𝑅̃𝐴𝐵=√𝑅𝐴𝐵
2 + 𝑎2(1 −

3

2
𝑒2)  . 

 
Elliptic integrals for calculation of the propagation time of the signal for the case of 

satellites on plane elliptical orbits 
 

Equations (5) and (6) represent differential equations with respect to the propagation time, 
defined for each of the satellites. The propagation time depends on variables, related to the motion of 
the satellites. For the case of the plane elliptic orbits, the dynamical parameters, related to the motion 
of the two satellites are the two eccentric anomaly angles 𝐸1 and 𝐸2. For the case of space-oriented 
orbits, the dynamical parameters will be the two true anomaly angles 𝑓1 and 𝑓2. All the other Kepler 
parameters, characterizing the orbit will be present in the formulas, but will not be dynamical ones. 
Moreover, each of the equations (5) and (6) will depend either on only 𝐸1 or 𝑓1, or on 𝐸2 or 𝑓2. The 

element of integration 𝑑𝑟 is lying in the plane of the orbit. 
For a plane elliptic orbit, characterized by the parameters (𝑎, 𝑒, 𝐸), the propagation time T is 

calculated in the paper [8] and then in the review article [7] of the author as  
 

(15)        𝑇 =
𝑎

𝑐
∫ √1 − 𝑒2𝑐𝑜𝑠2𝐸 𝑑𝐸 − 

2𝐺⨁𝑀⊕

𝑐3 ∫ √
1+𝑒𝑐𝑜𝑠𝐸

1−𝑒𝑐𝑜𝑠𝐸
𝑑𝐸 . 

 
It is important that the calculation turned out to be possible under the approximation  

 

(16)      𝛽 =
2𝑉

𝑐2 =
2𝐺⨁𝑀⊕

𝑐2𝑎
≪ 1  ,

2𝐺⨁𝑀⊕

𝑐2 𝑟𝑠
 = 0.167.10−9  ,   𝐺⨁𝑀⊕ = 3986005 × 108   [

𝑚3

𝑠2 ]  . 

 
Physically related to weak gravitational fields and slow motion – these assumptions in 

gravitational physics are compatible with the Equivalence Principle [11] fields. Inequality (16) is 

obtained for the value of the velocity of light 𝑐 = 299,792.458 [
𝑘𝑚

𝑠
]  and value of the large semi-major 

axis a =  26,561 [km]. It can be checked also that the coefficient in front of the first integral in (15) has 

the dimension of [
𝑚
𝑚

𝑠

] =[s], and the value of the coefficient in front of the second integral (the geocentric 

gravitational constant, divided by the third power of c) has the dimension [

𝒎𝟑

𝒔𝟐

𝒎𝟑

𝒔𝟑

]=[s].  Thus, the proper 

dimension for the coefficients in expression (15) for the propagation time T is a confirmation of the 
correctness of the mathematical formalism. If the inequality (16) is not taken into account, in [7] and [8] 
it was shown that yet a solution for T can be found, but in terms of an integral, which is not an abelian 
one and not possible to be solved analytically. 

In (15) the first term is an elliptic integral of the second kind and the second term can be 
decomposed as a sum of an elliptic integral of the first kind and in the Weierstrass form (third-order 
polynomial under the square root in the denominator) [7, 8]  

 

(17)       𝐼2
(𝐴)

=
4𝐺⨁𝑀⊕

𝑐3 .
1

𝑘̃√1−𝑒2
.∫

𝑑𝑦̌

√𝑦̌(𝑦̌+1)(𝑦̌+
1

𝑘4)
     

 
and an elliptic integral of the third kind, again in the Weierstrass form  
 

(18)        𝐼2
(𝐵)

=
4𝐺⨁𝑀⊕

𝑐3𝑞2 .
1

√1−𝑒2
∫

𝑑𝑦̌

(𝑦̌1−
1

𝑞2)√𝑦̌1(𝑦1̌+1)(𝑦̌+
1

𝑞2)
  .  

 
Both integrals (17) and (18) are written in terms of variables, depending on 𝑐𝑜𝑠𝐸 and with 

coefficients, inversely proportional to the third power of the velocity of light c. Thus, their contribution 
will be much smaller than the contribution of the first integral in (15), which is inversely proportional to 
c. The numerical calculation (by means of online programs for numerical calculation of elliptic 
integrals) of the first integral in (15), performed by using the sixth iteration for eccentric anomaly angle 
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𝐸6 from the Kepler equation (see the details in the review article [7]) gives the numerical value for the 
leading term in (15) for the propagation time  

 

(19)        𝑇1
(𝐸6)

=
𝑎

𝑐
∫ √1 − 𝑒2𝑐𝑜𝑠2𝐸

𝐸(6)

0
𝑑𝐸 = −0.0281342485273829 [𝑠]  . 

From the Kepler equation and for the sixth iteration 𝐸6, the celestial time of motion for the 

satellite is calculated to be 𝑇𝑐𝑒𝑙 = 37.5082561 [s]. If the velocity of the satellite is taken to be v =

3.874 [
𝑘𝑚

𝑠
], the satellite will move at a distance 145.125 [km]. If the propagation time for the signal (19) 

is multiplied by the light velocity (thus, the curving of the trajectory of the signal due to the gravitational 
field in the framework of GRT is taken into account), the signal will propagate at a distance 
26,558.151016917626350 [km]. Consequently, the propagation time is much smaller than the celestial 
time of motion of the satellite. This is so because the celestial time of motion is related to celestial 
mechanics, while the propagation time is an effect, following from General Relativity Theory. 

 
Elliptic integrals of higher order for calculation of the propagation time of the signal for 

the case of satellites on space-oriented elliptical orbits 
 

The position of space-oriented orbits is specified by 6 Kepler parameters (𝑎, 𝑒, Ι, 𝜔, Ω, 𝑓) [9], 
which determine not only the position of the satellite on the orbit (related to the true anomaly angle f) 
and the parameters of the elliptic orbit (𝑎, 𝑒), but also the position of the orbit in space (Ι, 𝜔, Ω), where I 
is the inclination of the orbit with respect to the equatorial plane. If at each point of the orbit the 
Cartesian coordinates are 𝑋, 𝑌, 𝑍, then the mapping (𝑋, 𝑌, 𝑍) → (𝑎, 𝑒, Ι, 𝜔, Ω, 𝑓) from a topological point 
of view signifies a transition to a submersion manifold [10] (of 6 dimensions-more than the 3 

dimensions of the initial manifold). The propagation time 𝑇̅ for a signal, if emitted by a satellite on a 
space-oriented orbit with the only dynamical parameter-the true anomaly angle f is much more 
complicated (below 𝑖 is the imaginary unit)  
 

                      𝑇̅ = 𝑖 [−2
𝑛𝑎

𝑐
𝑞

3

2 + 4
𝐺⨁𝑀⊕𝑛2𝑎

𝑐4 (1−𝑒2)
3
2)

𝑞
3

2] 𝐽2
(4)(𝑦, 𝑞) 

(20) 

                      + 𝑖 [−
2𝐺⨁ 𝑀⊕𝑛𝑎𝑞

5
2(1+𝑒2)

𝑐3 𝐽2
(4)(𝑦̃, 𝑞) +

2𝐺⨁𝑀⊕𝑛𝑞
3
2(1+𝑒2)

𝑐3(1−𝑒2)
𝐽4

(4)
(𝑦̃, 𝑞)] , 

 
where the second- and fourth- order elliptic integrals are expressed in the Legendre form  
 

(21)       𝐽2
(4)(𝑦, 𝑞) = ∫

𝑦2𝑑𝑦

√(1−𝑦2)(1−𝑞2𝑦2)
   ,      𝐽4

(4)(𝑦̃, 𝑞) =
𝑞5

𝑖
∫

𝑦̂4𝑑𝑦̂

√(𝑦̂2−1)(1−𝑞2𝑦̂2)
   .     

 
The variables 𝑦, 𝑦 ̃, 𝑦̂ and 𝑞 are defined as  

 

(22)       𝑦 = √
(1+𝑒𝑐𝑜𝑠𝐸)

𝑞(1−𝑒𝑐𝑜𝑠𝐸)
  ,   𝑦̃ =

√1+2𝑒𝑐𝑜𝑠𝑓+𝑒2

1+𝑒
 ,  𝑦̂=

𝑦̃

𝑞
   ,   𝑞 =

1−𝑒

1+𝑒
  .   

 
Conclusion 
 

This paper has the purpose to review two major approaches, proposed in a series of papers in 
the last 8 years: the method of “four-dimensional intersecting null cones” and the elliptic integrals 
method for calculation of the propagation time of the signal. The previously introduced notions of 
“space-time distance”, “condition for intersatellite communication” and “geodesic distance” in fact refer 
to the case, when the two null cones are intersecting. Yet, the newly derived equality (14) for the 
geodesic distance and for the simplified case of equal eccentricities and semi-major axis clearly shows 
that that in this approach the property of the light signal to travel a greater distance is preserved, as it 
is the case for the Shapiro delay formulae (1). It is very interesting that the greater value for the 
geodesic distance in comparison with the Euclidean distance is related also with the restriction 
e ≤ 0.81649658092 on the eccentricity of the orbit and the limiting values  
0.59 <  e ≤  0.81649658092 for the eccentricity of the orbit of the Space-Ground Radio Interferometer 
Radio-Astron. The last restriction is also natural for satellites on high elliptical orbits such as SBIRS 
(Space-Based Infrared System), consisting of four satellites, operating on geosynchronous Earth orbit, 
and sensors on two host satellites in a highly (large, with a large value of e) elliptical orbit. Elliptical 
orbit spacecrafts move with a variable orbit angular velocity, so it cannot be written as an explicit 
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expression of a time function [12]. Yet, the given value for the eccentricity of highly elliptic orbit 
e = 0.7146  in the monograph [12] falls well within the calculated in this paper range 

e ≤ 0.81649658092, so satellites can still operate and exchange signals. 

The other important result in the papers [6], [8], [9] and in the review paper [7] concerns a new 
method for expressing the propagation time of the signal in terms of elliptic functions. The calculated 
propagation distance for the value of time T = 0.0281342485273829 [s] in formulae (19) by using 
special online programs for numerical calculation of elliptic integrals is typical for the inter-satellite 
communications.  
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